“对于罕见病患者而言,有药可用永远都是第一位的。”
中国国际经济交流中心理事长毕井泉曾于2022年这样说。
罕见病,顾名思义,是患病相对较低的一类疾病。由于患病人数少、市场需求小,以及药物研发难度大、成本高、周期长,罕见病治疗难度居高不下,罕见病用药更被称为“孤儿药”。绝大多数罕见病患者都面临着治疗困难、药物短缺的问题。
据世界卫生组织(WHO)报道,在全球发现的超过7000种的罕见病中,有获批的相应治疗方案或药物的病种不到10%,且大多需要终身药物治疗。在这一严峻背景下,如何为罕见病寻求有效治疗药物是缓解罕见病患者治疗困境的关键一步。
日前,来自哈佛医学院的研究团队及其合作者开发了一个名为TxGNN的AI模型,这是首个专门为识别罕见疾病和无药可治病症的候选药物而开发的新办法,它从现有药物中确定了17000多种疾病的候选药物。与用于药物再利用的同类AI模型相比,TxGNN在识别候选药物方面平均提高了近50%,在预测哪些药物会有禁忌症方面,准确率也高出35%。相关研究论文已发表在Nature子刊Nature Medicine上。
AI如何促进药物再利用?
传统的药物再利用策略利用现有药物的安全性和有效性数据,可以加快新药物在临床中的应用,但这种方法往往是偶然的且机会性较强,很难系统地解决罕见病的药物研发问题。
在这种背景下,TxGNN应运而生,为药物重新利用带来了革命性的突破,特别是在罕见病药物发现中展现出巨大的潜力。
除了预测能力,TxGNN还特别设计了一个解释模块,用于帮助医生和研究人员理解模型的预测逻辑,展示了药物与疾病之间的潜在联系。
研究团队对TxGNN在罕见病药物发现中的实际应用进行了验证,并取得了令人鼓舞的成果。在实验中,TxGNN的许多预测与实际的临床非处方药物使用具有高度一致性。
TxGNN在预测Wilson病(一种导致铜代谢异常的罕见病)的潜在治疗药物时,推荐了去铁酮(Deferasirox)作为最有前途的候选药物。该药物在临床中已被用于治疗铁超载疾病,TxGNN通过其解释模块展示了去铁酮可能通过代谢途径对Wilson病的治疗产生积极作用。这一预测也与医学文献中的相关研究结果相符,显示了该模型的科学合理性。
在当前药物开发周期漫长、成本高昂的背景下,TxGNN为现有药物的重新利用提供了系统化的解决方案。
未来,随着这一技术的不断完善,它有望成为加速药物开发、特别是使罕见病患者“有药可用”的关键驱动力。
作者:阮文韵
编辑:王 珊
审核:贾慧娟
上一篇:2025年值得关注的技术趋势
下一篇:液流电池会是电动汽车未来选择吗?
咨询: 0371-69333566 电话: 136-7336-5366 邮箱: 470363313@qq.com 地址: 河南省郑州市金水区政七街13号2号楼
Copyright 2018-2025 科技新闻网 AII Rights Reserved 科技新闻网版权所有,未经书面授权,不得复制或建立镜像 互联网新闻信息服务许可证《编号: 41120200005》
豫ICP备06011472号-3 网站版本号: v2.2 更新日志 技术支持:全息数字科技